[giaban]0.000 VNĐ[/giaban] [kythuat]
Study of dosimetric and thermal properties of a newly developed thermo-brachytherapy seed for treatment of solid tumors


[/kythuat]
[tomtat]
Study of dosimetric and thermal properties of a newly developed thermo-brachytherapy seed for treatment of solid tumors
Table of Contents
Abstract
Acknowledgments
Table of Contents
List of Tables
List of Figures
List of Abbreviations
List of Symbols
1 Introduction
1.1 General Introduction
1.2 Motivation
1.3 Proposed Study
1.4 Thesis Outline
2 Literature Review
2.1 Radiation Therapy
2.1.1 External Beam Radiation Therapy (EBRT)
2.1.2 Brachytherapy
2.2 Hyperthermia
2.3 Types of Hyperthermia
2.3.1 Local Hyperthermia
2.3.1.1 External Local Hyperthermia
2.3.1.2 Intraluminal Local Hyperthermia
2.3.1.3 Interstitial Local Hyperthermia
2.3.2 Regional Hyperthermia
2.3.2.2 Deep Regional Hyperthermia
2.3.2.2 Regional Perfusion Hyperthermia
2.3.3 Whole-body Hyperthermia
2.4 Hyperthermia Heating Techniques
2.4.1 Electromagnetic Heating
2.4.1.1 Microwave Heating
2.4.1.2 Radiofrequency Heating
2.4.1.2.1 Resistive Heating
2.4.1.2.2 Capacitive Heating
2.4.1.2.3 Inductive Heating
2.4.1.2.3.1 Ferromagnetic (FM) Techniques
2.4.2 Heat Source (HS) Techniques
2.4.3 Ultrasound (US) Techniques
2.5 Biological Effect of Hyperthermia
2.5.1 Cellular Level Effect of Hyperthermia
2.5.2 Tissue Level Effect of Hyperthermia
2.6 Hyperthermia Combined with Radiation Therapy
2.7 Hyperthermia Combined with Chemotherapy
2.8 Thermotolerance
3 Theoretical Background
3.1 Magnetic Properties of Material
3.1.1 Diamagnetism
3.1.2 Paramagnetism
3.1.3 Ferromagnetism
3.2 Induction Heating
3.2.1 Skin and Penetration Depth
3.2.2 Induction Heating of a Cylindrical Conductor
3.2.2.1 Ferromagnetic Induction Heating and Thermal Self Regulation
3.3 Brachytherapy Radiation Dose Calculation Algorithm
3.3.1 Air-Kerma Strength
3.3.2 Dose Rate Constant
3.3.3 Geometrical Factor
3.3.4 Radial Dose Function
3.3.5 Anisotropy Function
4 Design Considerations of Thermo-brachytherapy Seed
4.1 Thermo-brachytherapy Seed Design
4.2 Experimental Study of Ferromagnetic Alloys
4.2.1 Fabrication of Ni-Cu Alloy
4.2.2 Measurement of Magnetic Properties of Alloys
4.3 Annealing and Quenching of the Magnetic Material
4.4 Penetration Depth of Titanium and Effect of Capsule on the Magnetic Field
4.4 Thermal Expansion of Thermo-brachytherapy Seed
4.5 Biocompatibility of Thermo-brachytherapy Seed
4.6 Radiographic Properties of the Seed
5 Methods and Materials
5.1 Monte Carlo Simulation Method
5.1.1 Air-Kerma Strength
5.1.2 Dose Rate Constant
5.1.3 Radial Dose Function
5.1.4 Anisotropy Function
5.2 Thermal Distribution Properties
5.2.1 Temperature Dependent Magnetic Permeability
5.3 Induction Heating Setup and Procedure
6 Results and Discussions
6.1 Radiation Characterizing Parameters
6.1.1 Validation of the Monte Carlo Setup
6.1.1.1 Air-Kerma Strength and Dose Rate Constant
6.1.1.2 Radial Dose Function
6.1.1.3 Anisotropy Function
6.1.2 Radiation Characteristics of Thermo-brachytherapy Seed
6.1.2.1 Air-Kerma Strength and Dose Rate Constant
6.1.2.2 Geometry Factor
6.1.2.2 Radial Dose Function
6.1.2.3 Anisotropy Function
6.2 Thermal Distribution Characteristics
6.2.1 Thermal Characteristics of Single Seed Heating
6.2.1.1 Effect of Seed orientation along the Magnetic Field Direction
6.2.2 Thermal Characteristics of Multiple Seed Heating
6.2.3 Effect of Blood Perfusion on Thermal Distribution
6.3 Result of Induction Heating Experiment
6.3.1 Induction Heating of the Regular BEST seed 2301 Model
6.3.2 Induction Heating of Ferromagnetic Ni-Cu Alloy Needle
7 Advantages and Limitations
7.1 Advantages of the Thermo-brachytherapy Seed
7.2 Limitations of the Thermo-brachytherapy Seed
8 Summary and Conclusions
References
Appendices
A. Induction Heating of a Cylindrically Shaped Implant 
[/tomtat]

Bài viết liên quan